The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in <u>the Industrial and</u>

Engineering Chemistry Research, December (2009).

Appendix A. <u>An Illustration of How to Access NIST TDE When Applying Aspen Plus to</u>

Develop a Biodiesel Process Model

To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0

Selection Petrol	eum 📔 Nonconver	ntional	🗸 🗸 Enterpris	se Database	
– Define componer	nts				
Component I	D Type	Compo	onent name	Formula	1
ME-12:0	Conventional	METHY	/L-DODECA	C13H26O2	_
ME-14:0	Conventional	METHY	/L-MYRISTA	C15H3002-N1	
ME-16:0	Conventional	METHY	/L-PALMITA	C17H34O2-N1	1
ME-16:1	Conventional	METHY	/L-PALMITC	C17H32O2-N5	
ME-18:0	Conventional	METHY	/L-STEARA	C19H38O2-N1	
ME-18:1	Conventional	METHY	/L-OLEATE	C19H36O2	
ME-18:2	Conventional	METHY	Y-LINOLEAT	C19H34O2	
ME-18:3	Conventional	METHY	/L-LINOLEN	C19H32O2	
ME-20:0	Conventional	METHY	/L-ARACHIE	C21H42O2-N1	
ME-20:1	Conventional	METHY	/L-CIS-11-EI	C21H4002-N1	
ME-22:0	Conventional	METHY	/L-BEHENA	C23H46O2	1
ME-22:1	Conventional	METHY	/L-ERUCAT	C23H44O2	
ME-24:0	Conventional	METHY	/L-TETRACI	C25H5002-N1	
ME-24:1	Conventional	C25H4	802-N2	C25H48O2-N2	

Step 1. Enter the FAME in the component list

Step 2. Go to "Tools" -> "NIST Thermo Data Engine (TDE)"

🢽 Integrated with Re	cy (GL'	r Flasi	h) Bas	sic Feed	Lumper2	2.0 - Aspe	en
File Edit View Data	Tools	Run	Plot	Library	Window	Costing	F
	Ana NIS Ret Clea Proj	Ilysis T Ther rieve F an Prop perty N	mo Da Parame Derty F Method	ta Engine eter Resul Parameter d Selection	(TDE) ts rs n Assistanl	t	•
	Conceptual Design 🕨						
	Imp Exp Vari	ort CA ort CA iable E:	PE-OP PE-OP xplorei	EN Packa EN Packa r	ge ge		
	Nex	t				F4	
	Opt	ions					

Step 3. Select the component

NIST/TDE Pure Component Property Evaluation	- D ×
Select component ME-12:0 ME-14:0 ME-16:1 Enter additional data	
<u>H</u> elp	

Step 4. Click "Evaluate now"

NIST/TDE Pur	e Component Property Evaluation	<u>- 🗆 ×</u>
Select co	omponent	
	Evaluate now	
	Enter additional data	
	<u>H</u> elp	

Step 5. The user can access the value of a specific property, eq. Liquid Density

/roperties	Parameters Experimen	tal Data Predicted Values Evaluated Results			
All Acentric Factor	Name	Description	Value	Units	Uncertai
Critical density (Liquid vs. Gas.)	DNLRACK	TDE Rackett parameters for liquid molar density	-	kg/cum	
Critical pressure (Liquid vs. Gas)			0.2445916	Unitless	
Littical temperature (Liquid vs. Gas.) Density (Liquid vs. Gas.)			0.2857143	Unitless	
Enthalpy of phase transition			712.0914	K	
Enthalpy of vaporization or sublimation (Liqui Heat canacity (Crustal 1 vs. Gas.)			1748839	N/sam	
Heat capacity (Ideal gas)			278.16	K	
Heat capacity (Liquid vs. Gas.) Heat of formation (Ideal gas.)			712 0914	ĸ	
Nonina meaning temperature Specific gravity at 60 F Standard liquid molar volume at 60 F Surface tension [Liquid vs. air] Thermal conductivity (Liquid vs. Gas) Thermal conductivity (Liquid vs. Gas) Vapor pressure (Liquid vs. Gas) Vapor pressure (Liquid vs. Gas) Visconity (Gas) Visconity (Gas)	4				Þ
	Reevaluate	Plot Sav	e to Form	Help	1

Appendix B <u>Prediction Methods and NIST TDE Equations for Thermophysical</u> <u>Properties</u>

B.1 Prediction Methods for Thermophysical Properties

T_b , T_c , P_c , ω : Constantinou and Gani Method²⁹

Required data: structure

$$T_{b}(K) = 204.359 \times \ln\left[\sum_{k} N_{k} \times tb1k + W \times \sum_{j} M_{j} \times tb2j\right]$$
(B.1)

$$T_{c}(K) = 181.128 \times \ln\left[\sum_{k} N_{k} \times tc1k + W \times \sum_{j} M_{j} \times tc2j\right]$$
(B.2)

$$P_{c}(bar) = \left[\sum_{k} N_{k} \times pc1k + W \times \sum_{j} M_{j} \times pc2j + 0.10022\right]^{-2} + 1.3705$$
(B.3)

$$\omega = 0.4085 \times \left\{ \ln \left[\sum_{k} N_{k} \times \omega 1k + W \times \sum_{j} M_{j} \times \omega 2j + 0.10022 + 1.1507 \right] \right\}^{(1/0.505)}$$
(B.4)

where W = 0 when only applying first-order and W = 1 when applying first-order and second-order.

Table B.1. Constantinou and Gani Contributions of T_b, T_c, P_c for Triglyceride

C-G	tb1k	tc1k	pc1k	ω
CH₃	0.8849	1.6781	0.0199	0.296
CH₂	0.9225	3.492	0.0106	0.147
сн	0.6033	4.033	0.0013	-0.071
CH2COO	3.3953	13.8116	0.0218	0.765
CH=CH	1.8433	7.3691	0.0179	0.252
СНЗСОО	3.636	12.5965	0.02902	0
ОН	3.2152	9.7292	0.005148	0.737
	tb2j	tc2j	pc2j	ω
CH ₂ -CH _m =CH m = 0, 1; n =	-0.1406	-0.5231	0.003538	-0.0115
СНОН	-0.5385	-2.8035	-0.00439	0.03654

T_c: Wilson and Jasperson Method ²⁹

Required data: T_b and structure

$$T_{c}(K) = \frac{T_{b}}{[0.048271 + \sum_{k} N_{k} \times \Delta tck + \sum_{j} M_{j} \times \Delta tcj]^{0.2}}$$
(B.5)

Table B.2. Wilson and Jasperson Contributions of $T_{c}\ for\ Triglyceride$

	∆tck
С	0.008532
н	0.002793
0	0.020341
	∆tcj
-COO-	-0.015

T_b, T_c, P_c: Dohrn and Brunner Method A³⁴

Required data: T_b and $V_{L, 20}$

$$a_{c} = \Omega_{a} \times a^{(1)} \times \left(\frac{b_{c}}{\Omega_{b}} \times T_{b}\right)^{a^{(2)}}$$
(B.6)

$$b_{c} = \Omega_{b} \times (b^{(1)} \times V_{L,20} \times T_{b} + b^{(2)})$$
(B.7)

$$T_{c}(K) = \frac{\Omega_{b} \times a_{c}}{\Omega_{a} \times b_{c}} \frac{1}{R}$$
(B.8)

$$P_{c}(kPa) = \frac{a_{c}}{\Omega_{a}} \left(\frac{\Omega_{b}}{b_{c}}\right)^{2}$$
(B.9)

$$\omega = -\frac{3}{7} \frac{\text{Log}(101.3 \,\text{kPa/P_c})}{(\text{T_c}/\text{T_b} - 1)} - 1 \tag{B.10}$$

where $\Omega_a = 0.45724$, $\Omega_b = 0.0778$, $a^{(1)} = 21.26924$ kJ/kmol-K, $a^{(2)} = 0.913049$, $b^{(1)} = 0.02556188$ K⁻¹, $b^{(2)} = 0.168721$ m³ kmol⁻¹, R = 8.314 kJ/kmol-K, V_{L, 20} is liquid density at 20°C

T_b , T_c , P_c , ω : Dohrn and Brunner Method B³⁴

Required data: vapor pressure at any temperature (P^{sat} at T_1) and $V_{\text{L},\,20}$

$$a_{c} = \Omega_{a} \times a^{(1)} \times \left(\frac{b_{c}}{\Omega_{b}} \times T_{b}\right)^{a^{(2)}}$$
(B.11)

$$b_{c} = \Omega_{b} \times (b^{(1)} \times V_{L,20} \times T_{b} + b^{(2)})$$
(B.12)

$$T_{c}(K) = \frac{\Omega_{b} \times a_{c}}{\Omega_{a} \times b_{c}} \frac{1}{R}$$
(B.13)

$$P_{c}(kPa) = \frac{a_{c}}{\Omega_{a}} \left(\frac{\Omega_{b}}{b_{c}}\right)^{2}$$
(B.14)

$$\omega = -\frac{3}{7} \frac{\text{Log}(P^{\text{sat}} \text{ at } T_1/P_c)}{(T_c/T_1 - 1)} - 1$$
(B.15)

Figure B.1. Iteration step of Dohrn and Brunner Method to predict T_b , T_c , P_c and ω

Dohrn and Brunner³⁴ use Joback²⁹ method to obtain the initial guesses of T_c and P_c . Joback method for T_c and P_c :

$$\mathbf{T}_{\mathbf{b}}\left(\mathbf{K}\right) = \mathbf{198} + \sum_{\mathbf{k}} \mathbf{N}_{\mathbf{k}} \times \mathbf{tbk}$$
(B.16)

$$\mathbf{T}_{\mathbf{c}}(\mathbf{K}) = \mathbf{T}_{\mathbf{b}} \times \left[\mathbf{0.584} + \mathbf{0.965} \times \left(\sum_{\mathbf{k}} \mathbf{N}_{\mathbf{k}} \times \mathbf{tck} \right) - \left(\sum_{\mathbf{k}} \mathbf{N}_{\mathbf{k}} \times \mathbf{tck} \right)^2 \right]^{-1}$$
(B.17)

$$\mathbf{P}_{c} (\mathbf{Bar}) = \left[\mathbf{0.113} + \mathbf{0.0032} \times \mathbf{N}_{\text{total atoms}} - \left(\sum_{k} \mathbf{N}_{k} \times \mathbf{pck} \right) \right]^{-2}$$
(B.18)

Table B.3. Joback Group Contributions of T_c and P_c for Triglyceride

	tbk	tck	pck
CH3	23.58	0.0141	-0.0012
-CH2-	22.88	0.0189	0
>CH-	21.74	0.0164	0.002
=CH-	24.96	0.0129	-0.0006
-000-	81.1	0.0481	0.0005

P_{vap}: Ambrowse and Walton Method ²⁹

Required data: T_c , P_c , ω

$$ln(\frac{P_{vap}}{P_{c}}) = f^{(0)}(T_{r}) + \omega f^{(1)}(T_{r}) + \omega^{2} f^{(2)}(T_{r})$$
(B.19)

$$f^{(0)}(T_{r}) = \frac{-5.97616 \times \tau + 1.29874 \times \tau^{1.5} - 0.60394 \times \tau^{2.5} - 1.06841 \times \tau^{5}}{T_{r}}$$
(B.20)

$$f^{(1)}(T_{r}) = \frac{-5.03365 \times \tau + 1.11505 \times \tau^{1.5} - 5.41217 \times \tau^{2.5} - 7.44628 \times \tau^{5}}{T_{r}}$$
(B.21)

$$f^{(2)}(T_{r}) = \frac{-0.64771 \times \tau + 2.41539 \times \tau^{1.5} - 4.26979 \times \tau^{2.5} + 3.25259 \times \tau^{5}}{T_{r}}$$
(B.22)

$$\tau = 1 - T_r \tag{B.23}$$

where T_r is reduced temperature.

P_{vap}: Ceriani and Meirelles Method ³⁷

Required data: Structure

$$\mathbf{ln}(\mathbf{P}_{i,vap},\mathbf{Pa}) = \sum_{k} \mathbf{N}_{k} \times \left(\mathbf{A}_{1k} + \frac{\mathbf{B}_{1k}}{\mathbf{T}^{1.5}} - \mathbf{C}_{1k} \times \mathbf{ln}(\mathbf{T}) - \mathbf{D}_{1k} \times \mathbf{T}\right) + \left[\mathbf{M}_{i} \times \sum_{k} \mathbf{N}_{k} \times \left(\mathbf{A}_{2k} + \frac{\mathbf{B}_{2k}}{\mathbf{T}^{1.5}} - \mathbf{C}_{2k} \times \mathbf{ln}(\mathbf{T}) - \mathbf{D}_{2k} \times \mathbf{T}\right)\right] + \mathbf{Q}$$
(B.24)

$$\mathbf{Q} = \boldsymbol{\xi}_1 \times \mathbf{q} + \boldsymbol{\xi}_2 \tag{B.25}$$

$$\mathbf{q} = \boldsymbol{\alpha} + \frac{\boldsymbol{\beta}}{\mathbf{T}^{1.5}} - \boldsymbol{\gamma} \times \ln(\mathbf{T}) - \boldsymbol{\delta} \times \mathbf{T}$$
(B.26)

$$\boldsymbol{\xi}_1 = \boldsymbol{f}_0 + \boldsymbol{N}_c \times \boldsymbol{f}_1 \tag{B.27}$$

$$\boldsymbol{\xi}_2 = \boldsymbol{s}_0 + \boldsymbol{N}_{cs} \times \boldsymbol{s}_1 \tag{B.28}$$

where T is temperature in Kevin, M_i is molecular weight and A_{1k} , B_{1k} , C_{1k} , D_{1k} , A_{2k} , B_{2k} , C_{2k} , D_{2k} are group contribution terms. N_c is the total number of carbon atoms in the molecule and N_{cs} is the number of carbons of the substitute fraction. For example, N_{cs} of lauric acid chain, $-OOC - (CH_2)_{10} - CH_3$, is 11.

	A _{lk}	B _{1k}	C _{1k}	D _{1k}	A _{2k}	B _{2k}	C _{2k}	D _{1k}
СНЗ	-117.5	7232.3	-22.7939	0.0361	0.00338	-63.3963	-0.00106	0.000015
CH2	8.4816	- 10987.8	1.4067	-0.00167	-0.00091	6.7157	0.000041	-0.00000126
соон	8.0734	-20478.3	0.0359	-0.00207	0.00399	-63.9929	-0.00132	0.00001
CH=cis	2.4317	1410.3	0.7868	-0.004	0	0	0	0
CH=trans	1.843	526.5	0.6584	-0.00368	0	0	0	0
COO	7.116	49152.6	2.337	-0.00848	0.00279	10.0396	-0.00034	0.00000295
ОН	28.4723	-16694	3.257	0	0.00485	0	0	0
CH2-CH-CH2	688.3	-349293	122.5	-0.1814	-0.00145	0	0	0
	fo	f ₁	sp	s ₁				
Esters	0.2773	-0.00444	-0.4476	0.0751				
Acylglycerols	0	0	0	0				
Fatty Ácids	0.001	0	0	0				
Alcohols	0.7522	-0.0203	0	0				
	α	β	Y	δ				
	3 4 4 4 3	-499.3	0.6136	-0.00517				

Table B.4. Ceriani and Meirelles Contributions of Vapor Pressure

ρ_L : Halvorsen Method³⁵ for triglycerides

Required data: T_c , P_c , Z_{RA} of the fatty acids

$$\rho^{TG} = \frac{\left(\sum_{i} \mathbf{x}_{i}^{\mathbf{FA}} \times \mathbf{MW}_{i}^{\mathbf{FA}}\right)}{\mathbf{R} \times \left(\sum_{i} \frac{\mathbf{x}_{i}^{\mathbf{FA}} \times \mathbf{T}_{c,i}^{\mathbf{FA}}}{\mathbf{P}_{c,i}^{\mathbf{FA}}}\right) \times \left(\sum_{i} \mathbf{x}_{i}^{\mathbf{FA}} \times \mathbf{Z}_{\mathbf{RA},i}^{\mathbf{FA}}\right)^{1 + (1 - \mathbf{T}_{r})^{2/7}} + \mathbf{F_{c}}$$
(B.29)

$$\mathbf{T}_{\mathbf{r}} = \frac{\mathbf{T}}{\sum_{i} \mathbf{x}_{i}^{\mathbf{F}\mathbf{A}} \times \mathbf{T}_{\mathbf{c},i}^{\mathbf{F}\mathbf{A}}} \tag{B.30}$$

$$\mathbf{M}\mathbf{W}^{\mathrm{TG}} = 3 \times \sum_{i} \mathbf{x}_{i}^{\mathrm{FA}} \times \mathbf{M}\mathbf{W}_{i}^{\mathrm{FA}} + 38.0488$$
(B.31)

$$\mathbf{F}_{c} = \mathbf{0.0236} + \mathbf{0.000082} \times \left| \mathbf{875} - \mathbf{MW}^{TG} \right| \text{ when } \mathbf{MW}^{TG} \ge \mathbf{875}$$
 (B.32)

$$\mathbf{F}_{c} = \mathbf{0.0236} + \mathbf{0.000098} \times \left| \mathbf{875} - \mathbf{MW}^{TG} \right| \text{ when } \mathbf{MW}^{TG} \le \mathbf{875}$$
(B.33)

where x_i^{FA} is molar fraction of the ith fatty acid chain in the triglyceride molecule, MW_i^{FA} is the molecular weight of the ith fatty acid, $T_{c,i}^{FA}$ is the critical temperature of the ith fatty acid, $P_{c,i}^{FA}$ is the critical pressure of the ith fatty acid and $Z_{RA,i}$ is the Rackett parameter of the ith fatty acid.

Fatty Acid	T₀ (K)	P₀ (bar)	Z _{RA}
12:0	756.21	19.22	0.2391
14:0	779.07	16.35	0.2326
16:0	799.89	14.08	0.2267
16:1	800.34	14.71	0.2290
18:0	819.00	12.25	0.2205
18:1	819.41	12.76	0.2230
18:2	819.82	13.31	0.2255
18:3	820.23	13.89	0.2284
20:0	836.65	10.76	0.2149
20:1	837.03	11.18	0.2172
22:0	853.06	9.52	0.2095
22:1	853.41	9.87	0.2116
22:2	853.77	10.24	0.2103
24:0	868.38	8.49	0.2040
24:1	868.71	8.78	0.2063
26:0	882.76	7.61	0.1990

Table B.5. Required Parameters for Halvorsen Method of ρ_L Prediction

Example: find the density of triolein (18:1) at 20° C

Procedure:

1. Triolein is pure triglyceride which is composed of three oleic acid chains (18:1).

2.
$$\sum \mathbf{x}_{i}^{FA} \times \mathbf{MW}_{i}^{FA} = 1 \times \mathbf{MW}_{18:1}^{FA} = 282.46 \text{ (kg / kmol)} = 0.28246 \text{ (kg/mol)}$$

3.
$$\sum \frac{\mathbf{x}_{i}^{FA} \times \mathbf{T}_{c,i}^{FA}}{\mathbf{P}_{c,i}^{FA}} = \frac{1 \times \mathbf{T}_{18:1}^{FA}}{\mathbf{P}_{18:1}^{FA}} = 6.4217 \text{ E} - 04 (\text{K} / \text{Pa})$$

4.
$$\sum \mathbf{X}_{i}^{FA} \times \mathbf{Z}_{RA,i}^{FA} = 1 \times \mathbf{Z}_{18:1}^{FA} = 0.223$$
 and

$$T_{r} = \frac{T}{\sum x_{i}^{FA} \times T_{c,i}^{FA}} = \frac{T}{1 \times T_{c,18:1}^{FA}} = \frac{293.15}{819.41} = 3.5776E - 01$$

- 5. $\left(\sum x_{_{i}}^{^{FA}} \times Z_{_{^{RA,i}}}^{^{FA}}\right)^{_{I^{+(I-T_{r})^{2/7}}}} = \left(1 \times Z_{18:1}^{^{FA}}\right)^{_{I^{+(I-T_{r})^{2/7}}}} = 5.9437E 02$
- 6. $MW^{TG} = 3 \times \sum x_{i}^{FA} \times MW_{i}^{FA} + 38.0488 = 3 \times (1 \times 282.46) + 38.0488 = 885.4288 \text{ (kg/kmol)}$

7
$$F_{c} = 0.0236 + 0.000082 \times |875 - MW^{TG}| = 2.4455E - 02 (g/cm^{3}) = 2.4455E01 (kg/m^{3})$$

$$\rho^{\text{TG}}\left(\frac{kg}{m^{3}}\right) = \frac{\left(\sum_{i} x_{i}^{\text{FA}} \times MW_{i}^{\text{FA}}\right)}{R \times \left(\sum_{i} \frac{x_{i}^{\text{FA}} \times T_{c,i}^{\text{FA}}}{P_{c,i}^{\text{FA}}}\right) \times \left(\sum_{i} x_{i}^{\text{FA}} \times Z_{RA,i}^{\text{FA}}\right)^{1+(1-T_{r})^{2/7}}} + F_{c}}$$
8.
$$= \frac{0.28246\left(\frac{kg}{mol}\right)}{8.314\left(\frac{Pa - m^{3}}{K - mol}\right) \times 6.4217E - 04\left(\frac{K}{Pa}\right) \times 5.9437E - 02}} + 2.455E01\left(\frac{kg}{m^{3}}\right)$$

$$= 914.66\frac{kg}{m^{3}}$$

9. The experimental value is 912.6 kg/m³ and the ARD is 0.23%.

C_{P, L}: Morad Method ³⁶ for triglycerides

Required data: T_c , ω of the fatty acids

$$\mathbf{C}_{p,L}^{TG} = \mathbf{C}_{p,mix}^{IG} + \mathbf{R} \times \begin{pmatrix} \mathbf{1.45} + \mathbf{0.45} \times (\mathbf{1} - \mathbf{T}_{r})^{-1} + \\ \mathbf{0.25} \times \boldsymbol{\omega}_{mix} \times \left[\left(\mathbf{17.11} + \mathbf{25.2} \times \frac{(\mathbf{1} - \mathbf{T}_{r})^{1/3}}{\mathbf{T}_{r}} + \frac{\mathbf{1.742}}{(\mathbf{1} - \mathbf{T}_{r})} \right) \right] \end{pmatrix}$$
(B.34)

$$\mathbf{T}_{\mathbf{r}} = \frac{\mathbf{T}}{\sum \mathbf{x}_{i}^{\mathbf{FA}} \times \mathbf{T}_{\mathbf{c},i}^{\mathbf{FA}}}$$
(B.35)

$$\mathbf{C}_{p,\text{mix}}^{\text{IG}} = \sum \mathbf{X}_{i}^{\text{FA}} \times \mathbf{C}_{p,i}^{\text{IG},\text{FA}}$$
(B.36)

$$\boldsymbol{\omega}_{\text{mix}} = \sum \mathbf{x}_{i}^{\text{FA}} \times \boldsymbol{\omega}_{i}^{\text{FA}}$$
(B.37)

$$\mathbf{MW}_{\mathbf{mix}} = \sum \mathbf{X}_{i}^{\mathbf{FA}} \times \mathbf{MW}_{i}^{\mathbf{FA}}$$
(B.38)

$$\mathbf{M}\mathbf{W}^{\mathrm{TG}} = 3 \times \sum_{i} \mathbf{x}_{i}^{\mathrm{FA}} \times \mathbf{M}\mathbf{W}_{i}^{\mathrm{FA}} + 38 \tag{B.39}$$

$$\mathbf{F}_{c} = -0.2386 - 0.0005 \times \begin{vmatrix} 850 - \mathbf{MW}^{TG} \end{vmatrix} \quad \text{when } \mathbf{MW}^{TG} \ge 850$$
(B.40)

$$\mathbf{F}_{c} = -0.3328 + 0.0001 \times \left| 850 - \mathbf{MW}^{TG} \right| \text{ when } \mathbf{MW}^{TG} \le 850$$
 (B.41)

where R=1.987 Cal/K-mol and the unit of heat capacity is Cal/K-mol. Table B. 6 lists the required parameters of fatty acids.

Fatty Acid	Tc (K)	ω	MW
12:0	756.21	0.8422	200.32
14:0	779.07	0.9760	228.37
16:0	799.88	1.1087	256.42
16:1	800.34	1.0524	254.41
18:0	819.00	1.2369	284.48
18:1	819.14	1.1850	282.46
18:2	819.82	1.1294	280.45
18:3	820.23	1.0724	278.43

Table B.6. Required Parameters for Morad Method of $C_{P,L}$ Prediction

 $C_{p,i}^{IG,FA}$ is idea gas heat capacity of fatty acid. Morad et al.³⁶ use Rihani method⁷⁶ to estimate $C_{p,i}^{IG,FA}$:

$$\mathbf{C}_{\mathbf{p}}^{\mathrm{IG,FA}} = \sum \mathbf{N}_{\mathbf{k}} \times \mathbf{a}_{\mathbf{k}} + \sum \mathbf{N}_{\mathbf{k}} \times \mathbf{b}_{\mathbf{k}} \times \mathbf{T} + \sum \mathbf{N}_{\mathbf{k}} \times \mathbf{c}_{\mathbf{k}} \times \mathbf{T}^{2} + \sum \mathbf{N}_{\mathbf{k}} \times \mathbf{d}_{\mathbf{k}} \times \mathbf{T}^{3} \quad (B.42)$$

where N_k is the number of the given functional groups. The unit of $\mathbf{C}_p^{\text{IG},\text{FA}}$ is Cal/K-mol.

Table B.7. Rihani Contributions of Ideal Gas Heat Capacity for Fatty Acid

	a _k	b _k	C _k	d _k
CH3	6.0870E-01	2.1433E-02	-8.5200E-06	1.1350E-09
CH2	3.9450E-01	2.1363E-02	-1.1970E-05	2.5960E-09
СН	-3.5232E+00	3.4158E-02	-2.8160E-05	8.0150E-09
-CH=CH- cis	-3.1210E+00	3.8060E-02	-2.3590E-05	5.5040E-09
-CH=CH- trans	9.3770E-01	2.9904E-02	-1.7490E-05	3.9180E-09
-COOH	1.4055E+00	3.4632E-02	-2.5570E-05	6.8860E-09
-COO-	2.7350E+00	1.0751E-02	6.6700E-06	-9.2300E-09

$\triangle H_{vap}$: Vetere method combined with Watson relation²⁹

Required data: T_b, T_c, P_c

$$\Delta H_{vap,b} = R \times T_{b} \frac{\left(1 - T_{br}\right)^{0.38} \left(\ln P_{c} - 0.513 + \frac{0.5066}{P_{c} T_{br}^{2}}\right)}{1 - T_{br} + \ln T_{br} \left(1 - \left(1 - T_{br}\right)^{0.38}\right)}$$
(B.43)

$$\Delta H_{vap} = \Delta H_{vap,b} \left(\frac{1 - T_r}{1 - T_{br}} \right)^{0.38}$$
(B.44)

where $\Delta H_{vap,b}$ is heat of vaporization at normal boiling point, T_r is reduced temperature, and T_{br} is reduced temperature at normal boiling point

B.2 <u>NIST TDE Equations for Thermophysical Property</u>

V_L: NIST Rackett Equation ²⁸

$$V_{L} = \frac{R \times T_{c}}{P_{c} \times Z_{RA}^{-\left[1 + \left(1 - \frac{T}{T_{c}}\right)^{C_{2}}\right]}}$$

(B.45)

Table B.8. The Parameters of NIST Rackett Equation for FAME

NIST TDE Rackett Equation (m ³ /mol)	C1 (Z_{RA})	C2	C3 (T _c , K)	C4 (P _c , Pa)	C5	C6
C12:0	0.2445916	0.2857143	712	1748839	278	712
C14:0	0.2353773	0.2857143	718	1448599	292	718
C16:0	0.2227887	0.2857143	749	1205875	303	749
C16:1	0.2071558	0.2857143	734	1279721	240	734
C18:0	0.2298488	0.2857143	770	1178960	312	770
C18:1	0.2225078	0.2857143	751	1124671	253	751
C18:2	0.2226222	0.2857143	773	1162805	234	773
C18:3	0.224261	0.2857143	774	1202626	110	774
C20:0	0.1967211	0.2857143	767	1036965	319	767
C20:1	0.2138194	0.2857143	767	990082	636	767
C22:0	0.1841152	0.2857143	785	901921	326	785
C22:1	0.2122916	0.2857143	784	881791	110	784
C24:0	0.183291	0.2857143	804	821192	332	804
C24:1	0.2010567	0.2857143	802	822329	678	802
Parameter	C1	C2	C3	C4	C5	C6
Description	Z _{RA}	-	T _c	Pc	T _{lower}	T _{upper}
Unit	N/A	N/A	Κ	Pa	Κ	K

V_L: NIST ThermoML Equation ²⁸

$$\mathbf{V}_{\mathrm{L}} = \sum_{i=1}^{\mathrm{C}_{5}} \mathbf{C}_{i} \times \mathbf{T}^{n-1}$$

(B.46)

Table B.9. The Parameters of NIST ThermoML Equation for $V_{\rm L}$

Parameter	Symbol	Unit
C1	-	kmol/m ³
C2	-	kmol/m ³ -K
C3	-	kmol/m ³ -K ²
C4	-	kmol/m ³ -K ³
C5	-	Unitless
C6	Tlower	к
C7	T_{upper}	К

C_{P, IG}: NIST Aly-Lee Equation ²⁸

$$\mathbf{C}_{\mathbf{P},\mathbf{IG}} = \mathbf{C}_1 + \mathbf{C}_2 \times \left(\frac{\mathbf{C}_3/\mathbf{T}}{\mathbf{Sinh}(\mathbf{C}_3/\mathbf{T})}\right)^2 + \mathbf{C}_4 \times \left(\frac{\mathbf{C}_5/\mathbf{T}}{\mathbf{Cosh}(\mathbf{C}_5/\mathbf{T})}\right)^2 \tag{B.47}$$

Table B.10. The Parameters of NIST Aly-Lee Equation for $C_{P,IG}$ for FAME

NIST Aly-Lee Equation (J / kmol-K)	C1	C2	C3	C4	C5	C6	C7
C12:0	240063.9	542541.1	-819	121697.8	0	200	980
C14:0	205454.4	805594.2	-574	-442429.9	650	200	980
C16:0	230137.9	910125.1	-574	-497826.1	-650	200	980
C16:1	234231.9	895310.9	-588	-512600	-664	200	980
C18:0	267382.2	563286.7	-569	596005.8	-1600	200	980
C18:1	269559.9	532189.6	-577	616279.7	-1617	200	980
C18:2	261554.1	984480.8	-1271	490798	-556	200	980
C18:3	265702.7	972734.7	-614	-599483.1	-687	200	980
C20:0	278834.7	1117297	-1214	609431	-536	200	980
C20:1	282797.7	1102514	-1240	579972.5	-545	200	980
C22:0	299203.3	1224641	564	-674861.1	-641	200	980
C22:1	307461.3	1206798	1237	638488.9	-544	200	980
C24:0	345378.1	741693.7	568	774619.4	-1600	200	980
C24:1	347594	710543.1	574	794868.1	-1613	200	980
Parameter	C1	C2	C3	C4	C5	C6	C7
Description	-	-	-	-	-	Tlower	Tupper
Unit	J/kmol-K	J/kmol-K	Κ	J/kmol-K	Κ	Κ	K

C_{P, L}: NIST ThermoML Equation ²⁸

$$\mathbf{C}_{\mathbf{P},\mathbf{L}} = \sum_{i=1}^{C_3} \mathbf{C}_i \times \mathbf{T}^{\mathbf{n}-1}$$
(B.48)

Table B.11. The Parameters of NIST ThermoML Equation for $C_{P,L}$

Parameter	Symbol	Unit
C1	-	J/kmol-K
C2	-	J/kmol-K ²
C3	-	Unitless
C4	Tlower	к
C5	Tupper	к

C_{P, L}: NIST TDE Equation ²⁸

$$C_{P,L} = \frac{C_5}{1 - \frac{T}{C_6}} + \sum_{i=1}^{C_7} C_i \times \left(1 - \frac{T}{C_6}\right)^{n-1}$$

(B.49)

Table B.12. The Parameters of NIST TDE Equation for $C_{P\!\!,\,L}$ for FAME

NIST TDE Equation (J/kmol-K)	C1	C2	C3	C4	C5	C6	C7	C8	С9
C12:0	508414.7	-1413.503	4.966722	-0.004025	8804.63	712	4	278	698
C14:0	974844.7	-4513.728	12.42177	-0.009581	11780.11	718	4	292	704
C16:0	767706.7	-2508.638	7.655214	-0.005827	10693.47	749	4	303	734
C16:1	472441.6	-168.3002	1.95041	-0.001492	7765.68	734	4	240	719
C18:0	689451.7	-1677.292	6.066038	-0.004698	10924.92	770	4	312	755
C18:1	466346.9	120.4442	1.566388	-0.00124	7728.59	761	4	253	746
C18:2	471973.1	-38.21093	1.788936	-0.001336	7519.56	773	4	234	758
C18:3	498535.9	-209.9461	1.964523	-0.001379	7539.46	774	4	250	759
C20:0	910960	-2927.919	9.154863	-0.007013	13838.95	767	4	319	750
C20:1	526862.5	76.54091	1.84262	-0.001448	8310.67	767	4	250	750
Parameter	C1	C2	C3	C4	C5	C6	C7	C8	C9
Description	-	-	-	-	-	T _c		T _{lower}	Tupper
Unit	J/kmol-K	J/kmol-K	J/kmol-K	J/kmol-K	J/kmol-K	K	N/A	K	K

P_{vap}: NIST Wagner Equation ²⁸

$$\ln(\mathbf{P}_{vap}) = \ln(\mathbf{P}_{c}) + \left(\frac{\mathbf{C}_{1} \times \left(1 - \frac{\mathbf{T}}{\mathbf{C}_{6}}\right) + \mathbf{C}_{2} \times \left(1 - \frac{\mathbf{T}}{\mathbf{C}_{6}}\right)^{1.5}}{+ \mathbf{C}_{3} \times \left(1 - \frac{\mathbf{T}}{\mathbf{C}_{6}}\right)^{2.5} + \mathbf{C}_{4} \times \left(1 - \frac{\mathbf{T}}{\mathbf{C}_{6}}\right)^{5}} \right) / \left(\frac{\mathbf{T}}{\mathbf{C}_{6}}\right)$$
(B.50)

NIST Wagner Equation (Bar)	C1	C2	C3	C4	C5	C6	C7	C8
C12:0	-9.694324	2.509544	-4.402982	-9.230351	14.3745	712	278	712
C14:0	-10.32312	0.2486618	-0.272116	-15.16169	14.1861	718	292	718
C16:0	-10.98844	4.20676	-8.735103	-5.583598	14.0027	749	303	749
C16:1	-11.50495	4.414073	-9.852489	-5.443423	14.0622	734	240	734
C18:0	-11.01778	3.60513	-9.883088	-2.333603	13.9801	770	312	770
C18:1	-11.90171	5.368385	-10.61564	-5.806015	13.933	761	253	761
C18:2	-11.17148	4.445311	-9.284593	-5.08707	13.9664	773	234	773
C18:3	-10.5887	2.436575	-6.783611	-7.340778	14	774	200	774
C20:0	-12.79261	6.579309	-14.06263	-4.254656	13.8518	767	319	767
C20:1	-12.46868	5.523578	-12.0696	-5.475907	13.8055	767	200	767
C22:0	-13.41457	5.666122	-13.2316	-8.207159	13.7123	785	326	785
C22:1	-12.9095	6.159538	-13.16899	-5.268222	13.6897	784	200	784
C24:0	-13.15767	6.335366	-13.74519	-5.33026	13.6185	804	332	804
C24:1	-13.28506	6.719306	-14.09176	-5.100378	13.6199	802	200	802
Parameter	C1	C2	C3	C4	C5	C6	C7	C8
Description	-	-	-	-	ln (P _c)	T _c	T_{lower}	T _{upper}
Unit	N/A	N/A	N/A	N/A	ln (Bar)	Κ	Κ	Κ

Table B.13. The Parameters of NIST Wagner Equation for $P_{vap}\ \text{for FAME}$

 $\bigtriangleup H_{vap}\!\!:$ NIST Watson Equation 28

$$\ln(\Delta \mathbf{H}_{vap}) = \mathbf{C}_1 + \sum_{i=2}^{C_6} \mathbf{C}_i \times \left(\frac{\mathbf{T}}{\mathbf{C}_5}\right)^{i-2} \times \ln(1 - \frac{\mathbf{T}}{\mathbf{C}_5})$$

Table B.14. The Parameters of NIST Watson Equation for $\triangle H_{vap}$ for FAME

(B.51)

NIST Watson Equation (J / kmol)	C1	C2	C3	C4	C5	C6	C7	C8
C12:0	18.71476	1.562579	-1.321583	0.2647786	712	4	278	712
C14:0	19.11147	2.941289	-3.70431	1.327995	718	4	292	718
C16:0	18.36144	-0.701121	2.342368	-1.24532	749	4	303	749
C16:1	19.10368	2.33551	-2.86149	1.05891	734	4	240	734
C18:0	18.34189	-0.918448	2.425747	-1.143153	770	4	312	770
C18:1	18.67553	0.0416939	1.315343	-0.907716	761	4	253	761
C18:2	19.07527	2.26599	-2.78663	1.03997	773	4	234	773
C18:3	18.49942	-0.978716	3.4717	2.2344	753	4	255	753
Parameter	C1	C2	C3	C4	C5	C6	C7	C8
Description	-	-	-	-	T _c	-	T_{lower}	T_{upper}
Unit	N/A	N/A	N/A	N/A	Κ	N/A	Κ	Κ